
Perl version 5.8.8 documentation - perlwin32

Page 1http://perldoc.perl.org

NAME
perlwin32 - Perl under Windows

SYNOPSIS
These are instructions for building Perl under Windows 9x/NT/2000/XP
 on the Intel x86 and Itanium
architectures.

DESCRIPTION
Before you start, you should glance through the README file
 found in the top-level directory to which
the Perl distribution
 was extracted. Make sure you read and understand the terms under
 which this
software is being distributed.

Also make sure you read BUGS AND CAVEATS below for the
 known limitations of this port.

The INSTALL file in the perl top-level has much information that is
 only relevant to people building
Perl on Unix-like systems. In
 particular, you can safely ignore any information that talks about

"Configure".

You may also want to look at two other options for building
 a perl that will work on Windows NT: the
README.cygwin and
 README.os2 files, each of which give a different set of rules to
 build a Perl that
will work on Win32 platforms. Those two methods
 will probably enable you to build a more
Unix-compatible perl, but
 you will also need to download and use various other build-time and

run-time support software described in those files.

This set of instructions is meant to describe a so-called "native"
 port of Perl to Win32 platforms. This
includes both 32-bit and
 64-bit Windows operating systems. The resulting Perl requires no
 additional
software to run (other than what came with your operating
 system). Currently, this port is capable of
using one of the
 following compilers on the Intel x86 architecture:

 Borland C++ version 5.02 or later
 Microsoft Visual C++ version 2.0 or later
 MinGW with gcc gcc version 2.95.2 or later

The last of these is a high quality freeware compiler. Use version
 3.2.x or later for the best results with
this compiler.

The Borland C++ and Microsoft Visual C++ compilers are also now being given
 away free. The
Borland compiler is available as "Borland C++ Compiler Free
 Command Line Tools" and is the same
compiler that ships with the full
 "Borland C++ Builder" product. The Microsoft compiler is available as

"Visual C++ Toolkit 2003", and also as part of the ".NET Framework SDK", and
 is the same compiler
that ships with "Visual Studio .NET 2003 Professional".

This port can also be built on the Intel IA64 using:

 Microsoft Platform SDK	 Nov 2001 (64-bit compiler and tools)

The MS Platform SDK can be downloaded from http://www.microsoft.com/.

This port fully supports MakeMaker (the set of modules that
 is used to build extensions to perl).
Therefore, you should be
 able to build and install most extensions found in the CPAN sites.
 See
Usage Hints for Perl on Win32 below for general hints about this.

Setting Up Perl on Win32
Make

You need a "make" program to build the sources. If you are using
 Visual C++ or the Platform
SDK tools under Windows NT/2000/XP, nmake
 will work. All other builds need dmake.

dmake is a freely available make that has very nice macro features
 and parallelability.

Perl version 5.8.8 documentation - perlwin32

Page 2http://perldoc.perl.org

A port of dmake for Windows is available from:

 http://search.cpan.org/dist/dmake/

Fetch and install dmake somewhere on your path.

There exists a minor coexistence problem with dmake and Borland C++
 compilers. Namely, if
a distribution has C files named with mixed
 case letters, they will be compiled into appropriate
.obj-files named
 with all lowercase letters, and every time dmake is invoked
 to bring files up to
date, it will try to recompile such files again.
 For example, Tk distribution has a lot of such files,
resulting in
 needless recompiles every time dmake is invoked. To avoid this, you
 may use the
script "sync_ext.pl" after a successful build. It is
 available in the win32 subdirectory of the Perl
source distribution.

Command Shell

Use the default "cmd" shell that comes with NT. Some versions of the
 popular 4DOS/NT shell
have incompatibilities that may cause you trouble.
 If the build fails under that shell, try building
again with the cmd
 shell.

The nmake Makefile also has known incompatibilities with the
 "command.com" shell that
comes with Windows 9x. You will need to
 use dmake and makefile.mk to build under Windows
9x.

The surest way to build it is on Windows NT/2000/XP, using the cmd shell.

Make sure the path to the build directory does not contain spaces. The
 build usually works in
this circumstance, but some tests will fail.

Borland C++

If you are using the Borland compiler, you will need dmake.
 (The make that Borland supplies
is seriously crippled and will not
 work for MakeMaker builds.)

See Make above.

Microsoft Visual C++

The nmake that comes with Visual C++ will suffice for building.
 You will need to run the
VCVARS32.BAT file, usually found somewhere
 like C:\MSDEV4.2\BIN or C:\Program
Files\Microsoft Visual Studio\VC98\Bin.
 This will set your build environment.

You can also use dmake to build using Visual C++; provided, however,
 you set OSRELEASE
to "microsft" (or whatever the directory name
 under which the Visual C dmake configuration
lives) in your environment
 and edit win32/config.vc to change "make=nmake" into
"make=dmake". The
 latter step is only essential if you want to use dmake as your default

make for building extensions using MakeMaker.

Microsoft Visual C++ Toolkit 2003

This free toolkit contains the same compiler and linker that ship with
 Visual Studio .NET 2003
Professional, but doesn't contain everything
 necessary to build Perl.

You will also need to download the "Platform SDK" (the "Core SDK" and "MDAC
 SDK"
components are required) for header files, libraries and rc.exe, and
 ".NET Framework SDK"
for more libraries and nmake.exe. Note that the latter
 (which also includes the free compiler
and linker) requires the ".NET
 Framework Redistributable" to be installed first. This can be
downloaded and
 installed separately, but is included in the "Visual C++ Toolkit 2003" anyway.

These packages can all be downloaded by searching in the Download Center at

http://www.microsoft.com/downloads/search.aspx?displaylang=en. (Providing exact
 links to
these packages has proven a pointless task because the links keep on
 changing so often.)

Try to obtain the latest version of the Platform SDK. Sometimes these packages
 contain a
particular Windows OS version in their name, but actually work on
 other OS versions too. For
example, the "Windows Server 2003 SP1 Platform SDK"
 also runs on Windows XP SP2 and
Windows 2000.

Perl version 5.8.8 documentation - perlwin32

Page 3http://perldoc.perl.org

According to the download pages the Toolkit and the .NET Framework SDK are only

supported on Windows 2000/XP/2003, so trying to use these tools on Windows
 95/98/ME and
even Windows NT probably won't work.

Install the Toolkit first, then the Platform SDK, then the .NET Framework SDK.
 Setup your
environment as follows (assuming default installation locations
 were chosen):

	 SET PATH=%SystemRoot%\system32;%SystemRoot%;C:\Program
Files\Microsoft Visual C++ Toolkit 2003\bin;C:\Program
Files\Microsoft SDK\Bin;C:\Program Files\Microsoft.NET\SDK\v1.1\Bin
	 SET INCLUDE=C:\Program Files\Microsoft Visual C++ Toolkit
2003\include;C:\Program Files\Microsoft SDK\include;C:\Program
Files\Microsoft Visual Studio .NET 2003\Vc7\include
	 SET LIB=C:\Program Files\Microsoft Visual C++ Toolkit
2003\lib;C:\Program Files\Microsoft SDK\lib;C:\Program
Files\Microsoft Visual Studio .NET 2003\Vc7\lib

Several required files will still be missing:

cvtres.exe is required by link.exe when using a .res file. It is actually
 installed by the
.NET Framework SDK, but into a location such as the
 following:

	 C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322

Copy it from there to C:\Program Files\Microsoft SDK\Bin

lib.exe is normally used to build libraries, but link.exe with the /lib
 option also works, so
change win32/config.vc to use it instead:

Change the line reading:

	 ar='lib'

to:

	 ar='link /lib'

It may also be useful to create a batch file called lib.bat in
 C:\Program Files\Microsoft
Visual C++ Toolkit 2003\bin containing:

	 @echo off
	 link /lib %*

for the benefit of any naughty C extension modules that you might want to build
 later
which explicitly reference "lib" rather than taking their value from
 $Config{ar}.

setargv.obj is required to build perlglob.exe (and perl.exe if the USE_SETARGV
 option
is enabled). The Platform SDK supplies this object file in source form
 in C:\Program
Files\Microsoft SDK\src\crt. Copy setargv.c, cruntime.h and
 internal.h from there to
some temporary location and build setargv.obj using

	 cl.exe /c /I. /D_CRTBLD setargv.c

Then copy setargv.obj to C:\Program Files\Microsoft SDK\lib

Alternatively, if you don't need perlglob.exe and don't need to enable the

USE_SETARGV option then you can safely just remove all mention of $(GLOBEXE)

from win32/Makefile and setargv.obj won't be required anyway.

Perl should now build using the win32/Makefile. You will need to edit that
 file to set

	 CCTYPE = MSVC70FREE

and to set CCHOME, CCINCDIR and CCLIBDIR as per the environment setup above.

Perl version 5.8.8 documentation - perlwin32

Page 4http://perldoc.perl.org

Microsoft Platform SDK 64-bit Compiler

The nmake that comes with the Platform SDK will suffice for building
 Perl. Make sure you are
building within one of the "Build Environment"
 shells available after you install the Platform
SDK from the Start Menu.

MinGW release 3 with gcc

The latest release of MinGW at the time of writing is 3.1.0, which contains
 gcc-3.2.3. It can be
downloaded here:

 http://www.mingw.org/

Perl also compiles with earlier releases of gcc (2.95.2 and up). See below
 for notes about
using earlier versions of MinGW/gcc.

You also need dmake. See Make above on how to get it.

MinGW release 1 with gcc

The MinGW-1.1 bundle contains gcc-2.95.3.

Make sure you install the binaries that work with MSVCRT.DLL as indicated
 in the README
for the GCC bundle. You may need to set up a few environment
 variables (usually ran from a
batch file).

There are a couple of problems with the version of gcc-2.95.2-msvcrt.exe
 released 7
November 1999:

It left out a fix for certain command line quotes. To fix this, be sure
 to download and
install the file fixes/quote-fix-msvcrt.exe from the above
 ftp location.

The definition of the fpos_t type in stdio.h may be wrong. If your
 stdio.h has this
problem, you will see an exception when running the
 test t/lib/io_xs.t. To fix this,
change the typedef for fpos_t from
 "long" to "long long" in the file
i386-mingw32msvc/include/stdio.h,
 and rebuild.

A potentially simpler to install (but probably soon-to-be-outdated) bundle
 of the above package
with the mentioned fixes already applied is available
 here:

http://downloads.ActiveState.com/pub/staff/gsar/gcc-2.95.2-msvcrt.zip
 ftp://ftp.ActiveState.com/pub/staff/gsar/gcc-2.95.2-msvcrt.zip

Building
Make sure you are in the "win32" subdirectory under the perl toplevel.
 This directory contains
a "Makefile" that will work with
 versions of nmake that come with Visual C++ or the Platform
SDK, and
 a dmake "makefile.mk" that will work for all supported compilers. The
 defaults in the
dmake makefile are setup to build using MinGW/gcc.

Edit the makefile.mk (or Makefile, if you're using nmake) and change
 the values of INST_DRV
and INST_TOP. You can also enable various
 build flags. These are explained in the
makefiles.

Note that it is generally not a good idea to try to build a perl with
 INST_DRV and INST_TOP
set to a path that already exists from a previous
 build. In particular, this may cause problems
with the
 lib/ExtUtils/t/Embed.t test, which attempts to build a test program and
 may end up
building against the installed perl's lib/CORE directory rather
 than the one being tested.

You will have to make sure that CCTYPE is set correctly and that
 CCHOME points to
wherever you installed your compiler.

The default value for CCHOME in the makefiles for Visual C++
 may not be correct for some
versions. Make sure the default exists
 and is valid.

You may also need to comment out the DELAYLOAD = ... line in the
 Makefile if you're using

Perl version 5.8.8 documentation - perlwin32

Page 5http://perldoc.perl.org

VC++ 6.0 without the latest service pack and
 the linker reports an internal error.

If you have either the source or a library that contains des_fcrypt(),
 enable the appropriate
option in the makefile. A ready-to-use version
 of fcrypt.c, based on the version originally
written by Eric Young at
 ftp://ftp.funet.fi/pub/crypt/mirrors/dsi/libdes/, is bundled with the

distribution and CRYPT_SRC is set to use it.
 Alternatively, if you have built a library that
contains des_fcrypt(),
 you can set CRYPT_LIB to point to the library name.
 Perl will also build
without des_fcrypt(), but the crypt() builtin will
 fail at run time.

If you want build some core extensions statically into perl's dll, specify
 them in the
STATIC_EXT macro.

Be sure to read the instructions near the top of the makefiles carefully.

Type "dmake" (or "nmake" if you are using that make).

This should build everything. Specifically, it will create perl.exe,
 perl58.dll at the perl toplevel,
and various other extension dll's
 under the lib\auto directory. If the build fails for any reason,
make
 sure you have done the previous steps correctly.

Testing Perl on Win32
Type "dmake test" (or "nmake test"). This will run most of the tests from
 the testsuite (many tests will
be skipped).

There should be no test failures when running under Windows NT/2000/XP.
 Many tests will fail under
Windows 9x due to the inferior command shell.

Some test failures may occur if you use a command shell other than the
 native "cmd.exe", or if you
are building from a path that contains
 spaces. So don't do that.

If you are running the tests from a emacs shell window, you may see
 failures in op/stat.t. Run "dmake
test-notty" in that case.

If you're using the Borland compiler, you may see a failure in op/taint.t
 arising from the inability to find
the Borland Runtime DLLs on the system
 default path. You will need to copy the DLLs reported by the
messages
 from where Borland chose to install it, into the Windows system directory
 (usually
somewhere like C:\WINNT\SYSTEM32) and rerun the test.

If you're using Borland compiler versions 5.2 and below, you may run into
 problems finding the correct
header files when building extensions. For
 example, building the "Tk" extension may fail because both
perl and Tk
 contain a header file called "patchlevel.h". The latest Borland compiler
 (v5.5) is free of this
misbehaviour, and it even supports an
 option -VI- for backward (bugward) compatibility for using the
old Borland
 search algorithm to locate header files.

If you run the tests on a FAT partition, you may see some failures for link() related tests:

 Failed Test Stat Wstat Total Fail Failed List

 ../ext/IO/lib/IO/t/io_dup.t 6 4 66.67% 2-5
 ../lib/File/Temp/t/mktemp.t 9 1 11.11% 2
 ../lib/File/Temp/t/posix.t 7 1 14.29% 3
 ../lib/File/Temp/t/security.t 13 1 7.69% 2
 ../lib/File/Temp/t/tempfile.t 20 2 10.00% 2 4
 comp/multiline.t 6 2 33.33% 5-6
 io/dup.t 8 6 75.00% 2-7
 op/write.t 47 7 14.89% 1-3 6
9-11

Testing on NTFS avoids these errors.

Furthermore, you should make sure that during make test you do not
 have any GNU tool packages

Perl version 5.8.8 documentation - perlwin32

Page 6http://perldoc.perl.org

in your path: some toolkits like Unixutils
 include some tools (type for instance) which override the
Windows
 ones and makes tests fail. Remove them from your path while testing to
 avoid these errors.

Please report any other failures as described under BUGS AND CAVEATS.

Installation of Perl on Win32
Type "dmake install" (or "nmake install"). This will put the newly
 built perl and the libraries under
whatever INST_TOP points to in the
 Makefile. It will also install the pod documentation under
$INST_TOP\$INST_VER\lib\pod and HTML versions of the same under
$INST_TOP\$INST_VER\lib\pod\html.

To use the Perl you just installed you will need to add a new entry to
 your PATH environment
variable: $INST_TOP\bin, e.g.

 set PATH=c:\perl\bin;%PATH%

If you opted to uncomment INST_VER and INST_ARCH in the makefile
 then the installation structure
is a little more complicated and you will
 need to add two new PATH components instead:
$INST_TOP\$INST_VER\bin and $INST_TOP\$INST_VER\bin\$ARCHNAME, e.g.

 set PATH=c:\perl\5.6.0\bin;c:\perl\5.6.0\bin\MSWin32-x86;%PATH%

Usage Hints for Perl on Win32
Environment Variables

The installation paths that you set during the build get compiled
 into perl, so you don't have to
do anything additional to start
 using that perl (except add its location to your PATH variable).

If you put extensions in unusual places, you can set PERL5LIB
 to a list of paths separated by
semicolons where you want perl
 to look for libraries. Look for descriptions of other
environment
 variables you can set in perlrun.

You can also control the shell that perl uses to run system() and
 backtick commands via
PERL5SHELL. See perlrun.

Perl does not depend on the registry, but it can look up certain default
 values if you choose to
put them there. Perl attempts to read entries from HKEY_CURRENT_USER\Software\Perl
and HKEY_LOCAL_MACHINE\Software\Perl.
 Entries in the former override entries in the
latter. One or more of the
 following entries (of type REG_SZ or REG_EXPAND_SZ) may be
set:

 lib-$]		 version-specific standard library path to add to @INC
 lib			 standard library path to add to @INC
 sitelib-$]		 version-specific site library path to add to @INC
 sitelib		 site library path to add to @INC
 vendorlib-$]	 version-specific vendor library path to add to @INC
 vendorlib		 vendor library path to add to @INC
 PERL*		 fallback for all %ENV lookups that begin with "PERL"

Note the $] in the above is not literal. Substitute whatever version
 of perl you want to honor
that entry, e.g. 5.6.0. Paths must be
 separated with semicolons, as usual on win32.

File Globbing

By default, perl handles file globbing using the File::Glob extension,
 which provides portable
globbing.

If you want perl to use globbing that emulates the quirks of DOS
 filename conventions, you
might want to consider using File::DosGlob
 to override the internal glob() implementation. See
File::DosGlob for
 details.

Using perl from the command line

Perl version 5.8.8 documentation - perlwin32

Page 7http://perldoc.perl.org

If you are accustomed to using perl from various command-line
 shells found in UNIX
environments, you will be less than pleased
 with what Windows offers by way of a command
shell.

The crucial thing to understand about the Windows environment is that
 the command line you
type in is processed twice before Perl sees it.
 First, your command shell (usually CMD.EXE on
Windows NT, and
 COMMAND.COM on Windows 9x) preprocesses the command line, to
handle
 redirection, environment variable expansion, and location of the
 executable to run.
Then, the perl executable splits the remaining
 command line into individual arguments, using
the C runtime library
 upon which Perl was built.

It is particularly important to note that neither the shell nor the C
 runtime do any wildcard
expansions of command-line arguments (so
 wildcards need not be quoted). Also, the quoting
behaviours of the
 shell and the C runtime are rudimentary at best (and may, if you are
 using a
non-standard shell, be inconsistent). The only (useful) quote
 character is the double quote (").
It can be used to protect spaces
 and other special characters in arguments.

The Windows NT documentation has almost no description of how the
 quoting rules are
implemented, but here are some general observations
 based on experiments: The C runtime
breaks arguments at spaces and
 passes them to programs in argc/argv. Double quotes can
be used to
 prevent arguments with spaces in them from being split up. You can
 put a double
quote in an argument by escaping it with a backslash and
 enclosing the whole argument
within double quotes. The backslash and
 the pair of double quotes surrounding the argument
will be stripped by
 the C runtime.

The file redirection characters "<", ">", and "|" can be quoted by
 double quotes (although there
are suggestions that this may not always
 be true). Single quotes are not treated as quotes by
the shell or
 the C runtime, they don't get stripped by the shell (just to make
 this type of quoting
completely useless). The caret "^" has also
 been observed to behave as a quoting character,
but this appears
 to be a shell feature, and the caret is not stripped from the command
 line, so
Perl still sees it (and the C runtime phase does not treat
 the caret as a quote character).

Here are some examples of usage of the "cmd" shell:

This prints two doublequotes:

 perl -e "print '\"\"' "

This does the same:

 perl -e "print \"\\\"\\\"\" "

This prints "bar" and writes "foo" to the file "blurch":

 perl -e "print 'foo'; print STDERR 'bar'" > blurch

This prints "foo" ("bar" disappears into nowhereland):

 perl -e "print 'foo'; print STDERR 'bar'" 2> nul

This prints "bar" and writes "foo" into the file "blurch":

 perl -e "print 'foo'; print STDERR 'bar'" 1> blurch

This pipes "foo" to the "less" pager and prints "bar" on the console:

 perl -e "print 'foo'; print STDERR 'bar'" | less

This pipes "foo\nbar\n" to the less pager:

 perl -le "print 'foo'; print STDERR 'bar'" 2>&1 | less

This pipes "foo" to the pager and writes "bar" in the file "blurch":

 perl -e "print 'foo'; print STDERR 'bar'" 2> blurch | less

Perl version 5.8.8 documentation - perlwin32

Page 8http://perldoc.perl.org

Discovering the usefulness of the "command.com" shell on Windows 9x
 is left as an exercise
to the reader :)

One particularly pernicious problem with the 4NT command shell for
 Windows NT is that it
(nearly) always treats a % character as indicating
 that environment variable expansion is
needed. Under this shell, it is
 therefore important to always double any % characters which
you want
 Perl to see (for example, for hash variables), even when they are
 quoted.

Building Extensions

The Comprehensive Perl Archive Network (CPAN) offers a wealth
 of extensions, some of
which require a C compiler to build.
 Look in http://www.cpan.org/ for more information on
CPAN.

Note that not all of the extensions available from CPAN may work
 in the Win32 environment;
you should check the information at
 http://testers.cpan.org/ before investing too much effort
into
 porting modules that don't readily build.

Most extensions (whether they require a C compiler or not) can
 be built, tested and installed
with the standard mantra:

 perl Makefile.PL
 $MAKE
 $MAKE test
 $MAKE install

where $MAKE is whatever 'make' program you have configured perl to
 use. Use "perl
-V:make" to find out what this is. Some extensions
 may not provide a testsuite (so "$MAKE
test" may not do anything or
 fail), but most serious ones do.

It is important that you use a supported 'make' program, and
 ensure Config.pm knows about it.
If you don't have nmake, you can
 either get dmake from the location mentioned earlier or get
an
 old version of nmake reportedly available from:

http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/nmak
e15.exe

Another option is to use the make written in Perl, available from
 CPAN.

 http://www.cpan.org/modules/by-module/Make/

You may also use dmake. See Make above on how to get it.

Note that MakeMaker actually emits makefiles with different syntax
 depending on what 'make'
it thinks you are using. Therefore, it is
 important that one of the following values appears in
Config.pm:

 make='nmake'	 # MakeMaker emits nmake syntax
 make='dmake'	 # MakeMaker emits dmake syntax
 any other value	 # MakeMaker emits generic make syntax
 			 (e.g GNU make, or Perl make)

If the value doesn't match the 'make' program you want to use,
 edit Config.pm to fix it.

If a module implements XSUBs, you will need one of the supported
 C compilers. You must
make sure you have set up the environment for
 the compiler for command-line compilation.

If a module does not build for some reason, look carefully for
 why it failed, and report
problems to the module author. If
 it looks like the extension building support is at fault, report

that with full details of how the build failed using the perlbug
 utility.

Command-line Wildcard Expansion

The default command shells on DOS descendant operating systems (such
 as they are)

Perl version 5.8.8 documentation - perlwin32

Page 9http://perldoc.perl.org

usually do not expand wildcard arguments supplied to
 programs. They consider it the
application's job to handle that.
 This is commonly achieved by linking the application (in our
case,
 perl) with startup code that the C runtime libraries usually provide.
 However, doing that
results in incompatible perl versions (since the
 behavior of the argv expansion code differs
depending on the
 compiler, and it is even buggy on some compilers). Besides, it may
 be a
source of frustration if you use such a perl binary with an
 alternate shell that *does* expand
wildcards.

Instead, the following solution works rather well. The nice things
 about it are 1) you can start
using it right away; 2) it is more
 powerful, because it will do the right thing with a pattern like

//*.c; 3) you can decide whether you do/don't want to use it; and
 4) you can extend the
method to add any customizations (or even
 entirely different kinds of wildcard expansion).

	 C:\> copy con c:\perl\lib\Wild.pm
	 # Wild.pm - emulate shell @ARGV expansion on shells that don't
	 use File::DosGlob;
	 @ARGV = map {
		 my @g = File::DosGlob::glob($_) if /[*?]/;
		 @g ? @g : $_;
		 } @ARGV;
	 1;
	 ^Z
	 C:\> set PERL5OPT=-MWild
	 C:\> perl -le "for (@ARGV) { print }" */*/perl*.c
	 p4view/perl/perl.c
	 p4view/perl/perlio.c
	 p4view/perl/perly.c
	 perl5.005/win32/perlglob.c
	 perl5.005/win32/perllib.c
	 perl5.005/win32/perlglob.c
	 perl5.005/win32/perllib.c
	 perl5.005/win32/perlglob.c
	 perl5.005/win32/perllib.c

Note there are two distinct steps there: 1) You'll have to create
 Wild.pm and put it in your perl
lib directory. 2) You'll need to
 set the PERL5OPT environment variable. If you want argv
expansion
 to be the default, just set PERL5OPT in your default startup
 environment.

If you are using the Visual C compiler, you can get the C runtime's
 command line wildcard
expansion built into perl binary. The resulting
 binary will always expand unquoted command
lines, which may not be
 what you want if you use a shell that does that for you. The expansion
done is also somewhat less powerful than the approach suggested above.

Win32 Specific Extensions

A number of extensions specific to the Win32 platform are available
 from CPAN. You may find
that many of these extensions are meant to
 be used under the Activeware port of Perl, which
used to be the only
 native port for the Win32 platform. Since the Activeware port does not

have adequate support for Perl's extension building tools, these
 extensions typically do not
support those tools either and, therefore,
 cannot be built using the generic steps shown in the
previous section.

To ensure smooth transitioning of existing code that uses the
 ActiveState port, there is a
bundle of Win32 extensions that contains
 all of the ActiveState extensions and several other
Win32 extensions from
 CPAN in source form, along with many added bugfixes, and with
MakeMaker
 support. The latest version of this bundle is available at:

 http://search.cpan.org/dist/libwin32/

See the README in that distribution for building and installation
 instructions.

Perl version 5.8.8 documentation - perlwin32

Page 10http://perldoc.perl.org

Notes on 64-bit Windows

Windows .NET Server supports the LLP64 data model on the Intel Itanium
 architecture.

The LLP64 data model is different from the LP64 data model that is the
 norm on 64-bit Unix
platforms. In the former, int and long are
 both 32-bit data types, while pointers are 64 bits
wide. In addition,
 there is a separate 64-bit wide integral type, __int64. In contrast,
 the LP64
data model that is pervasive on Unix platforms provides int
 as the 32-bit type, while both the
long type and pointers are of
 64-bit precision. Note that both models provide for 64-bits of

addressability.

64-bit Windows running on Itanium is capable of running 32-bit x86
 binaries transparently.
This means that you could use a 32-bit build
 of Perl on a 64-bit system. Given this, why would
one want to build
 a 64-bit build of Perl? Here are some reasons why you would bother:

A 64-bit native application will run much more efficiently on
 Itanium hardware.

There is no 2GB limit on process size.

Perl automatically provides large file support when built under
 64-bit Windows.

Embedding Perl inside a 64-bit application.

Running Perl Scripts
Perl scripts on UNIX use the "#!" (a.k.a "shebang") line to
 indicate to the OS that it should execute the
file using perl.
 Win32 has no comparable means to indicate arbitrary files are
 executables.

Instead, all available methods to execute plain text files on
 Win32 rely on the file "extension". There
are three methods
 to use this to execute perl scripts:

1 There is a facility called "file extension associations" that will
 work in Windows NT 4.0.
This can be manipulated via the two
 commands "assoc" and "ftype" that come
standard with Windows NT
 4.0. Type "ftype /?" for a complete example of how to set
this
 up for perl scripts (Say what? You thought Windows NT wasn't
 perl-ready? :).

2 Since file associations don't work everywhere, and there are
 reportedly bugs with file
associations where it does work, the
 old method of wrapping the perl script to make it
look like a
 regular batch file to the OS, may be used. The install process
 makes
available the "pl2bat.bat" script which can be used to wrap
 perl scripts into batch files.
For example:

	 pl2bat foo.pl

will create the file "FOO.BAT". Note "pl2bat" strips any
 .pl suffix and adds a .bat suffix
to the generated file.

If you use the 4DOS/NT or similar command shell, note that
 "pl2bat" uses the "%*"
variable in the generated batch file to
 refer to all the command line arguments, so you
may need to make
 sure that construct works in batch files. As of this writing,
 4DOS/NT
users will need a "ParameterChar = *" statement in their
 4NT.INI file or will need to
execute "setdos /p*" in the 4DOS/NT
 startup file to enable this to work.

3 Using "pl2bat" has a few problems: the file name gets changed,
 so scripts that rely on
$0 to find what they must do may not
 run properly; running "pl2bat" replicates the
contents of the
 original script, and so this process can be maintenance intensive
 if the
originals get updated often. A different approach that
 avoids both problems is possible.

A script called "runperl.bat" is available that can be copied
 to any filename (along with
the .bat suffix). For example,
 if you call it "foo.bat", it will run the file "foo" when it is

executed. Since you can run batch files on Win32 platforms simply
 by typing the name
(without the extension), this effectively
 runs the file "foo", when you type either "foo" or
"foo.bat".
 With this method, "foo.bat" can even be in a different location
 than the file
"foo", as long as "foo" is available somewhere on
 the PATH. If your scripts are on a

Perl version 5.8.8 documentation - perlwin32

Page 11http://perldoc.perl.org

filesystem that allows symbolic
 links, you can even avoid copying "runperl.bat".

Here's a diversion: copy "runperl.bat" to "runperl", and type
 "runperl". Explain the
observed behavior, or lack thereof. :)
 Hint: .gnidnats llits er'uoy fi ,"lrepnur" eteled :tniH

Miscellaneous Things
A full set of HTML documentation is installed, so you should be
 able to use it if you have a web
browser installed on your
 system.

perldoc is also a useful tool for browsing information contained
 in the documentation, especially in
conjunction with a pager
 like less (recent versions of which have Win32 support). You may
 have to
set the PAGER environment variable to use a specific pager.
 "perldoc -f foo" will print information
about the perl operator
 "foo".

One common mistake when using this port with a GUI library like Tk
 is assuming that Perl's normal
behavior of opening a command-line
 window will go away. This isn't the case. If you want to start a
copy
 of perl without opening a command-line window, use the wperl
 executable built during the
installation process. Usage is exactly
 the same as normal perl on Win32, except that options like -h

don't work (since they need a command-line window to print to).

If you find bugs in perl, you can run perlbug to create a
 bug report (you may have to send it
manually if perlbug cannot
 find a mailer on your system).

BUGS AND CAVEATS
Norton AntiVirus interferes with the build process, particularly if
 set to "AutoProtect, All Files, when
Opened". Unlike large applications
 the perl build process opens and modifies a lot of files. Having the

the AntiVirus scan each and every one slows build the process significantly.
 Worse, with
PERLIO=stdio the build process fails with peculiar messages
 as the virus checker interacts badly with
miniperl.exe writing configure
 files (it seems to either catch file part written and treat it as suspicious,

or virus checker may have it "locked" in a way which inhibits miniperl
 updating it). The build does
complete with

 set PERLIO=perlio

but that may be just luck. Other AntiVirus software may have similar issues.

Some of the built-in functions do not act exactly as documented in perlfunc, and a few are not
implemented at all. To avoid
 surprises, particularly if you have had prior exposure to Perl
 in other
operating environments or if you intend to write code
 that will be portable to other environments, see
perlport
 for a reasonably definitive list of these differences.

Not all extensions available from CPAN may build or work properly
 in the Win32 environment. See
Building Extensions.

Most socket() related calls are supported, but they may not
 behave as on Unix platforms. See
perlport for the full list.
 Perl requires Winsock2 to be installed on the system. If you're
 running Win95,
you can download Winsock upgrade from here:

http://www.microsoft.com/windows95/downloads/contents/WUAdminTools/S_WUNetworking
Tools/W95Sockets2/Default.asp

Later OS versions already include Winsock2 support.

Signal handling may not behave as on Unix platforms (where it
 doesn't exactly "behave", either :). For
instance, calling die()
 or exit() from signal handlers will cause an exception, since most

implementations of signal() on Win32 are severely crippled.
 Thus, signals may work only for
simple things like setting a flag
 variable in the handler. Using signals under this port should
 currently
be considered unsupported.

Please send detailed descriptions of any problems and solutions that
 you may find to <

Perl version 5.8.8 documentation - perlwin32

Page 12http://perldoc.perl.org

perlbug@perl.org>, along with the output
 produced by perl -V.

ACKNOWLEDGEMENTS
The use of a camel with the topic of Perl is a trademark
 of O'Reilly and Associates, Inc. Used with
permission.

AUTHORS
Gary Ng <71564.1743@CompuServe.COM>

Gurusamy Sarathy <gsar@activestate.com>

Nick Ing-Simmons <nick@ing-simmons.net>

Jan Dubois <jand@activestate.com>

Steve Hay <steve.hay@uk.radan.com>

This document is maintained by Jan Dubois.

SEE ALSO
perl

HISTORY
This port was originally contributed by Gary Ng around 5.003_24,
 and borrowed from the Hip
Communications port that was available
 at the time. Various people have made numerous and sundry
hacks
 since then.

Borland support was added in 5.004_01 (Gurusamy Sarathy).

GCC/mingw32 support was added in 5.005 (Nick Ing-Simmons).

Support for PERL_OBJECT was added in 5.005 (ActiveState Tool Corp).

Support for fork() emulation was added in 5.6 (ActiveState Tool Corp).

Win9x support was added in 5.6 (Benjamin Stuhl).

Support for 64-bit Windows added in 5.8 (ActiveState Corp).

Last updated: 30 September 2005

