
Perl version 5.8.8 documentation - Test::Harness

Page 1http://perldoc.perl.org

NAME
Test::Harness - Run Perl standard test scripts with statistics

VERSION
Version 2.56

SYNOPSIS
 use Test::Harness;

 runtests(@test_files);

DESCRIPTION
STOP! If all you want to do is write a test script, consider
 using Test::Simple. Test::Harness is the
module that reads the
 output from Test::Simple, Test::More and other modules based on

Test::Builder. You don't need to know about Test::Harness to use
 those modules.

Test::Harness runs tests and expects output from the test in a
 certain format. That format is called
TAP, the Test Anything
 Protocol. It is defined in Test::Harness::TAP.

Test::Harness::runtests(@tests) runs all the testscripts named
 as arguments and checks
standard output for the expected strings
 in TAP format.

The prove utility is a thin wrapper around Test::Harness.

Taint mode
Test::Harness will honor the -T or -t in the #! line on your
 test files. So if you begin a test with:

 #!perl -T

the test will be run with taint mode on.

Configuration variables.
These variables can be used to configure the behavior of
 Test::Harness. They are exported on
request.

$Test::Harness::Verbose

The package variable $Test::Harness::Verbose is exportable and can be
 used to let
runtests() display the standard output of the script
 without altering the behavior otherwise.
The prove utility's -v
 flag will set this.

$Test::Harness::switches

The package variable $Test::Harness::switches is exportable and can be
 used to set
perl command line options used for running the test
 script(s). The default value is -w. It
overrides HARNESS_SWITCHES.

$Test::Harness::Timer

If set to true, and Time::HiRes is available, print elapsed seconds
 after each test file.

Failure
When tests fail, analyze the summary report:

 t/base..............ok
 t/nonumbers.........ok
 t/ok................ok
 t/test-harness......ok
 t/waterloo..........dubious

Perl version 5.8.8 documentation - Test::Harness

Page 2http://perldoc.perl.org

 Test returned status 3 (wstat 768, 0x300)
 DIED. FAILED tests 1, 3, 5, 7, 9, 11, 13, 15, 17, 19
 Failed 10/20 tests, 50.00% okay
 Failed Test Stat Wstat Total Fail Failed List of Failed

 t/waterloo.t 3 768 20 10 50.00% 1 3 5 7 9 11 13 15 17 19
 Failed 1/5 test scripts, 80.00% okay. 10/44 subtests failed, 77.27% okay.

Everything passed but t/waterloo.t. It failed 10 of 20 tests and
 exited with non-zero status indicating
something dubious happened.

The columns in the summary report mean:

Failed Test

The test file which failed.

Stat

If the test exited with non-zero, this is its exit status.

Wstat

The wait status of the test.

Total

Total number of tests expected to run.

Fail

Number which failed, either from "not ok" or because they never ran.

Failed

Percentage of the total tests which failed.

List of Failed

A list of the tests which failed. Successive failures may be
 abbreviated (ie. 15-20 to indicate
that tests 15, 16, 17, 18, 19 and
 20 failed).

Functions
Test::Harness currently only has one function, here it is.

runtests

 my $allok = runtests(@test_files);

This runs all the given @test_files and divines whether they passed
 or failed based on their
output to STDOUT (details above). It prints
 out each individual test which failed along with a
summary report and
 a how long it all took.

It returns true if everything was ok. Otherwise it will die() with
 one of the messages in the
DIAGNOSTICS section.

_all_ok

 my $ok = _all_ok(\%tot);

Tells you if this test run is overall successful or not.

_globdir

 my @files = _globdir $dir;

Returns all the files in a directory. This is shorthand for backwards
 compatibility on systems

Perl version 5.8.8 documentation - Test::Harness

Page 3http://perldoc.perl.org

where glob() doesn't work right.

_run_all_tests

 my($total, $failed) = _run_all_tests(@test_files);

Runs all the given @test_files (as runtests()) but does it
 quietly (no report). $total is a
hash ref summary of all the tests
 run. Its keys and values are this:

 bonus Number of individual todo tests unexpectedly
passed
 max Number of individual tests ran
 ok Number of individual tests passed
 sub_skipped Number of individual tests skipped
 todo Number of individual todo tests

 files Number of test files ran
 good Number of test files passed
 bad Number of test files failed
 tests Number of test files originally given
 skipped Number of test files skipped

If $total->{bad} == 0 and $total->{max} > 0, you've
 got a successful test.

$failed is a hash ref of all the test scripts which failed. Each key
 is the name of a test script,
each value is another hash representing
 how that script failed. Its keys are these:

 name Name of the test which failed
 estat Script's exit value
 wstat Script's wait status
 max Number of individual tests
 failed Number which failed
 percent Percentage of tests which failed
 canon List of tests which failed (as string).

$failed should be empty if everything passed.

NOTE Currently this function is still noisy. I'm working on it.

_mk_leader

 my($leader, $ml) = _mk_leader($test_file, $width);

Generates the 't/foo........' leader for the given $test_file as well
 as a similar version which
will overwrite the current line (by use of
 \r and such). $ml may be empty if Test::Harness
doesn't think you're
 on TTY.

The $width is the width of the "yada/blah.." string.

_leader_width

 my($width) = _leader_width(@test_files);

Calculates how wide the leader should be based on the length of the
 longest test name.

EXPORT
&runtests is exported by Test::Harness by default.

$verbose, $switches and $debug are exported upon request.

DIAGNOSTICS
All tests successful.\nFiles=%d, Tests=%d, %s

Perl version 5.8.8 documentation - Test::Harness

Page 4http://perldoc.perl.org

If all tests are successful some statistics about the performance are
 printed.

FAILED tests %s\n\tFailed %d/%d tests, %.2f%% okay.

For any single script that has failing subtests statistics like the
 above are printed.

Test returned status %d (wstat %d)

Scripts that return a non-zero exit status, both $? >> 8
 and $? are printed in a message
similar to the above.

Failed 1 test, %.2f%% okay. %s

Failed %d/%d tests, %.2f%% okay. %s

If not all tests were successful, the script dies with one of the
 above messages.

FAILED--Further testing stopped: %s

If a single subtest decides that further testing will not make sense,
 the script dies with this
message.

ENVIRONMENT VARIABLES THAT TEST::HARNESS SETS
Test::Harness sets these before executing the individual tests.

HARNESS_ACTIVE

This is set to a true value. It allows the tests to determine if they
 are being executed through
the harness or by any other means.

HARNESS_VERSION

This is the version of Test::Harness.

ENVIRONMENT VARIABLES THAT AFFECT TEST::HARNESS
HARNESS_COLUMNS

This value will be used for the width of the terminal. If it is not
 set then it will default to
COLUMNS. If this is not set, it will
 default to 80. Note that users of Bourne-sh based shells will
need to export COLUMNS for this module to use that variable.

HARNESS_COMPILE_TEST

When true it will make harness attempt to compile the test using perlcc before running it.

NOTE This currently only works when sitting in the perl source
 directory!

HARNESS_DEBUG

If true, Test::Harness will print debugging information about itself as
 it runs the tests. This is
different from HARNESS_VERBOSE, which prints
 the output from the test being run. Setting
$Test::Harness::Debug will
 override this, or you can use the -d switch in the prove utility.

HARNESS_FILELEAK_IN_DIR

When set to the name of a directory, harness will check after each
 test whether new files
appeared in that directory, and report them as

 LEAKED FILES: scr.tmp 0 my.db

If relative, directory name is with respect to the current directory at
 the moment runtests() was
called. Putting absolute path into HARNESS_FILELEAK_IN_DIR may give more predictable
results.

HARNESS_IGNORE_EXITCODE

Makes harness ignore the exit status of child processes when defined.

HARNESS_NOTTY

Perl version 5.8.8 documentation - Test::Harness

Page 5http://perldoc.perl.org

When set to a true value, forces it to behave as though STDOUT were
 not a console. You
may need to set this if you don't want harness to
 output more frequent progress messages
using carriage returns. Some
 consoles may not handle carriage returns properly (which results
in a
 somewhat messy output).

HARNESS_PERL

Usually your tests will be run by $^X, the currently-executing Perl.
 However, you may want to
have it run by a different executable, such as
 a threading perl, or a different version.

If you're using the prove utility, you can use the --perl switch.

HARNESS_PERL_SWITCHES

Its value will be prepended to the switches used to invoke perl on
 each test. For example,
setting HARNESS_PERL_SWITCHES to -W will
 run all tests with all warnings enabled.

HARNESS_VERBOSE

If true, Test::Harness will output the verbose results of running
 its tests. Setting
$Test::Harness::verbose will override this,
 or you can use the -v switch in the prove
utility.

EXAMPLE
Here's how Test::Harness tests itself

 $ cd ~/src/devel/Test-Harness
 $ perl -Mblib -e 'use Test::Harness qw(&runtests $verbose);
 $verbose=0; runtests @ARGV;' t/*.t
 Using /home/schwern/src/devel/Test-Harness/blib
 t/base..............ok
 t/nonumbers.........ok
 t/ok................ok
 t/test-harness......ok
 All tests successful.
 Files=4, Tests=24, 2 wallclock secs (0.61 cusr + 0.41 csys = 1.02 CPU)

SEE ALSO
The included prove utility for running test scripts from the command line, Test and Test::Simple for
writing test scripts, Benchmark for
 the underlying timing routines, and Devel::Cover for test coverage

analysis.

TODO
Provide a way of running tests quietly (ie. no printing) for automated
 validation of tests. This will
probably take the form of a version
 of runtests() which rather than printing its output returns raw data

on the state of the tests. (Partially done in Test::Harness::Straps)

Document the format.

Fix HARNESS_COMPILE_TEST without breaking its core usage.

Figure a way to report test names in the failure summary.

Rework the test summary so long test names are not truncated as badly.
 (Partially done with new skip
test styles)

Add option for coverage analysis.

Trap STDERR.

Implement Straps total_results()

Perl version 5.8.8 documentation - Test::Harness

Page 6http://perldoc.perl.org

Remember exit code

Completely redo the print summary code.

Implement Straps callbacks. (experimentally implemented)

Straps->analyze_file() not taint clean, don't know if it can be

Fix that damned VMS nit.

HARNESS_TODOFAIL to display TODO failures

Add a test for verbose.

Change internal list of test results to a hash.

Fix stats display when there's an overrun.

Fix so perls with spaces in the filename work.

Keeping whittling away at _run_all_tests()

Clean up how the summary is printed. Get rid of those damned formats.

BUGS
HARNESS_COMPILE_TEST currently assumes it's run from the Perl source
 directory.

Please use the CPAN bug ticketing system at http://rt.cpan.org/.
 You can also mail bugs, fixes and
enhancements to <bug-test-harness at rt.cpan.org>.

AUTHORS
Either Tim Bunce or Andreas Koenig, we don't know. What we know for
 sure is, that it was inspired by
Larry Wall's TEST script that came
 with perl distributions for ages. Numerous anonymous contributors
exist. Andreas Koenig held the torch for many years, and then
 Michael G Schwern.

Current maintainer is Andy Lester <andy at petdance.com>.

COPYRIGHT
Copyright 2002-2005
 by Michael G Schwern <schwern at pobox.com>,
 Andy Lester <andy at
petdance.com>.

This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

See http://www.perl.com/perl/misc/Artistic.html.

